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[1] Improved resolution of lower crustal structure, composition, and physical properties enhances our under-
standing and ability to model tectonic processes. The cratonic core of Montana and Wyoming, USA, con-
tains some of the most enigmatic lower crust known in North America, with a high seismic velocity layer
contributing to as much as half of the crustal column. Petrological and physical property data for xenoliths
in Eocene volcanic rocks from central Montana provide new insight into the nature of the lower crust in this
region. Inherent heterogeneity in xenoliths derived from depths below �30 km support a composite origin
for the deep layer. Possible intralayer velocity steps may complicate the seismic definition of the crust/mantle
boundary and interpretations of crustal thickness, particularly when metasomatized upper mantle is consid-
ered. Mafic mineral-dominant crustal xenoliths and published descriptions of mica-bearing peridotite and
pyroxenite xenoliths suggest a strong lower crust overlying a potentially weaker upper mantle.
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1. Introduction

[2] The Rocky Mountain and High Plains region
of Montana and Wyoming, USA, (Figure 1) contain
perhaps some of the most enigmatic lower crust in
North America. The region is part of the cratonic
core of the continent but contains a high seismic

velocity lower crustal layer (>7.0 km/s P wave
speed [Gorman et al., 2002]) that is more than three
times the mean thickness of comparable layers in
Precambrian shields worldwide [Barnhart et al.,
2012; Christensen and Mooney, 1995]. This “7.x
layer” averages 25 km in thickness in a crustal col-
umn that totals 49–60 km [Gorman et al., 2002;
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Schutt et al., 2008; Snelson et al., 1998], and could
have had a profound influence on the rheology of
the lithosphere during orogenic events subsequent
to its Archean and Proterozoic construction. This
paper summarizes new and existing data from
crustal xenoliths in Montana that bear on the com-
position and physical and rheological properties of
the lower crust in the region.

2. Background and Xenolith Data From
Great Falls Tectonic Zone

[3] Montana and Wyoming consist of Archean cra-
tons amalgamated in the Proterozoic and accreted
Proterozoic terranes, both of which have been cov-
ered by Phanerozoic sedimentary rocks and Late
Mesozoic and Cenozoic volcanic rocks (Figure 1).
The cratons include the Medicine Hat Block to the
north, which is obscured by the Western Canada
Sedimentary Basin and which has been studied
exclusively by geophysical methods, xenoliths, and
drill core samples [e.g., Ross, 2002]. Basement rocks
of the Wyoming craton are observed in discrete
Laramide-age uplifts and through xenolith studies.
The Wyoming craton and Medicine Hat Block are
sutured together by the ca. 1.86–1.71 Ga Great Falls
Tectonic Zone [Giletti, 1966; Harms et al., 2004;
Mueller et al., 2002; O’Neill and Lopez, 1985].
The ca. 1.78–1.75 Ga Cheyenne Belt [Duebendorfer
et al., 2006; Karlstrom and Houston, 1984] bounds
the Wyoming craton to the south, and both cratonic
blocks are bounded to the east by the ca. 1.83–
1.72 Ga Trans-Hudson orogen [Bickford et al., 1990;
Dahl et al., 1999; Maxeiner et al., 2005]. Crustal
thickness estimates in Montana and Wyoming vary
from 40 to 60 km, with much of the region underlain
by a layer of anomalously thick (10–30 km) and
seismically fast lower crust referred to here as the 7.x
layer [Bensen et al., 2009; Gilbert, 2012; Gorman
et al., 2002; Rumpfhuber and Keller, 2009; Schutt
et al., 2008; Snelson et al., 1998; Stachnik et al.,
2008; Yuan et al., 2010].

[4] Both cratonic blocks and the Great Falls Tec-
tonic Zone contain volcanic rocks and kimberlites
of the Paleogene Montana alkali igneous province
[e.g.,Marvin et al., 1980], many localities of which
contain upper mantle and lower crustal xenoliths
[Barnhart et al., 2012; Blackburn et al., 2011, 2012a,
2012b; Bolhar et al., 2007; Buhlmann et al., 2000;
Carlson and Irving, 1994; Collerson et al., 1989;
Davis et al., 1995; Downes et al., 2004; Facer et al.,
2009; Hearn, 1989; Hearn et al., 1989; Joswiak,
1992]. Crustal xenoliths for which new data are
presented here are from the Sweet Grass Hills near

the Montana/Alberta border and the Homestead
kimberlite in central Montana (Figure 1). The former
are dated at ca. 50 Ma [e.g., Buhlmann et al., 2000]
and the latter are assumed to have a similar 50 Ma
age based on dates from nearby kimberlite pipes in
central Montana [Hearn, 2004].

[5] A variety of geochronological data have been
reported from previous xenolith studies in the region,
yielding U-Pb zircon dates ranging from late Archean
(ca. 3.0 Ga) to Mesoproterozoic (ca. 1.3 Ga). Despite
zircon data from a wide range of lithologies, Archean
dates are reported primarily from felsic to interme-
diate composition mid-crustal xenoliths [Blackburn
et al., 2011; Bolhar et al., 2007; Davis et al., 1995],
including one of the Sweet Grass Hills xenoliths for
which seismic data are reported here (05SG-02).
All published Montana xenolith studies that we are
familiar with include significant if not exclusive ca.
1.8–1.7 Ga populations of dominantly metamorphic
zircon andmonazite [Barnhart et al., 2012;Blackburn
et al., 2011, 2012a; Bolhar et al., 2007; Carlson and
Irving, 1994;Davis et al., 1995; Scherer et al., 2000],
suggesting that this represents the age range of
major granulite-facies metamorphism of lower crust
in the region. Xenoliths from several localities in the
Bears Paw Mountains volcanic field (Figure 1) con-
tain ca. 2.2–2.1 and/or 1.4–1.3 Ga zircon or monazite
[Barnhart et al., 2012; Bolhar et al., 2007; Scherer
et al., 2000], indicating early or late periods, respec-
tively, of metamorphism and/or fluid flow events
and possibly new magmatic additions to the lower
crust at these times [Barnhart et al., 2012]. Several
reports involving chemical/mineralogical studies of
both the Cenozoic volcanic rocks themselves and
direct observations from mantle xenoliths suggest
one or more upper mantle metasomatic events across
a broad region of the Montana alkali igneous prov-
ince. These include studies in the Highwood Moun-
tains [Carlson and Irving, 1994;O’Brien et al., 1991;
O’Brien et al., 1995; Rudnick et al., 1999], Eagle
Buttes [Carlson and Irving, 1994], the Bears Paw
mountains [Downes et al., 2004; Facer et al., 2009;
MacDonald et al., 1992], the CrazyMountains [Dudas
et al., 1987], and the Milk River area of southern
Alberta [Buhlmann et al., 2000] which is part of the
Sweet Grass Hills igneous complex (Figure 1).

3. New Data From Sweet Grass Hills
and Homestead Xenolith Localities

[6] New seismic velocity and density data are pre-
sented for five samples from Sweet Grass Hills
(05SG-02, -03, -05, -08, and -20) and two from the
Homestead kimberlite (HS-1 and HS-2). Mineral
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compositions and thermobarometry for three of the
Sweet Grass Hills samples (05SG-02, -05, and -20)
were presented by Blackburn et al. [2011], and data
for the remaining four samples are first reported
here (see auxiliary material for sample descriptions,
mineral composition, photomicrographs).1

[7] Modal mineralogy (Table 1) was quantified by
automated scanning electron microscope analysis
(QEMSCAN [Hoal et al., 2009; Pirrie and
Rollinson, 2011; Pirrie et al., 2004]) at the Color-
ado School of Mines (see auxiliary material for
more information and Pirrie and Rollinson [2011]
for a comprehensive review of the technique and
modern applications). Quantitative mineral compo-
sitions (Table S1 in Text S1 the auxiliary material)

Figure 1. Geologic map of region centered around Montana showing xenolith localities and seismic arrays relevant
to this study. Xenolith locality abbreviations: MR-Milk River, SGH-Sweet Grass Hills, RR-Robinson Ranch, LSC-
Little Sand Creek, EB-Eagle Buttes, HS-Homestead. Extent of subsurface Belt basin sediments is taken from the
Geologic Map of Montana [Vuke et al., 2007]. Thick dashed gray lines represent approximate boundaries of the
Great Falls Tectonic Zone and Trans-Hudson/Dakota orogen. The 106� gravity profile is from Snelson et al. [1998].

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GC004332.
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were determined by electron microprobe at the
University of Colorado Boulder. Specific analytical
settings, instrumentation, and evaluation strategies
are given in the auxiliary material and by Barnhart
et al. [2012]. Bulk major element compositions
were calculated from modal proportions and major
and minor mineral compositions (Table S2). Fol-
lowing Barnhart et al. [2012], the samples are
divided into mafic (<52 wt% SiO2), intermediate
(>52 wt% and <57 wt% SiO2), and felsic (>57 wt%
SiO2) granulites (Figures 2a–2d). Of the new sam-
ples presented here, three of the Sweet Grass Hills
samples (05SG-03, -08 and -20) and both Home-
stead xenoliths are mafic granulites. The remaining
two Sweet Grass Hills samples are felsic granulites
(05SG-02 and -05).

[8] Calculated pressures for two new Sweet Grass
Hills samples and two Homestead samples range
from 1.10 to 1.34 GPa (see auxiliary material for
thermobarometry details), which falls within a broader
range of pressures from 0.6 to 1.53 GPa reported for
thirteen other xenoliths from central Montana
reported by Barnhart et al. [2012]. These pressures
are interpreted to approximate the depths from
which the samples were derived during exhumation
based on 1) the common occurrence of mineral
chemical zoning characteristics that are consistent
with isobaric cooling at depth for samples that lack

tectonic decompression textures, 2) the presence
of reaction textures in some xenoliths studied by
Barnhart et al. [2012] that reflect post-peak tectonic
decompression (in these instances, retrograde pres-
sures were used for residence depths), and 3) the
observation that all crustal xenolith localities dis-
cussed here also host mantle peridotite xenoliths.
The resulting pressures correspond to �23 to
�54 km depths using the model crustal density
profile of Christensen and Mooney [1995].

[9] Bulk seismic properties and densities (Table 2
and Figure 2) were calculated from the modal pro-
portions, mineral compositions, and single crystal
elastic data via the physical properties spreadsheet of
Hacker and Abers [2004]. Calculations were made at
25�C for comparison with laboratory measurements
commonly reported at room temperature and at
500�C (Figures 2a–2d), which is a maximum long-
term residence temperature for modern lower crust in
this region [Blackburn et al., 2012a], for better
comparison to modern seismic observations. The
Voigt-Reuss-Hill (VRH) and Hashin-Shtrikman (H-
S) averages are reported in Table 2. The former [Hill,
1952], which is the most commonly used in Earth
science literature (also used in Figure 2), is a reliable
scheme for evaluating elastic properties but does not
account for the geometric arrangement of mineral
grains [e.g.,Mainprice and Humbert, 1994], whereas

Table 1. Modal Mineralogy for Montana Crustal Xenolithsa

Sweet Grass Hills Homestead

05SG02b 05SG03 05SG05b 05SG08 05SG20b HS1 HS1-alt HS2

Qz 63.94 8.61 14.31 0.91 0.00 0.00 0.00 0.09
Grt 9.39 34.51 25.13 33.83 55.58 8.57 2.17 24.69
Pl 23.95 23.51 39.58 26.09 7.77 36.7 7.31 52.79
Cpx 0.00 23.9 0.00 35.55 35.37 25.08 20.75 10.40
Opx 0.00 1.14 0.00 1.92 0.00 12.83 0.00 0.00
Hbl 0.00 0.00 0.00 0.00 0.00 13.11 8.78 6.75
Sil 0.00 0.00 1.01 0.00 0.00 0.00 0.00 0.00
Bt 0.45 0.00 0.92 0.60 0.00 0.7 0.7 0.00
Kfs 1.80 2.46 17.7 0.37 0.00 0.00 0.00 0.00
Rt 0.40 0.00 0.55 0.08 0.61 0.01 0.01 0.00
Ilmc 0.02 4.81 0.01 0.49 0.43 1.20 1.20 4.13
Ap <0.01 0.48 0.05 0.11 0.12 1.41 1.41 1.03
Ttn 0.00 <0.01 0.00 <0.01 0.00 0.17 0.17 0.12
mag/hem 0.00 0.41 0.56 0.00 0.00 0.00 0.00 0.00
alterationd 0.00 0.00 0.00 0.00 0.00 0.00 57.28 0.00
Other accessories 0.05 0.17 0.18 0.04 0.12 0.22 0.22 <0.01
Total 100.00 100.00 100.00 99.99 100.00 ##### 100.00 100.00

aOther accessories include sulfides, monazite, zircon, etc.
bModal compositions for samples 05SG02, 05SG05, and 05SG20 were reported in the appendix of Blackburn et al. [2011] but are included in

tabulated form here for completeness.
cIncludes both primary ilmenite and secondary ilmenite rims on rutile.
dSecondary alteration is minor in most samples and not included. The one exception is HS1 where >50% of the sample is altered to chlorite

(�19%), albite (�16%), carbonate (�13%), actinolite (�9%), and secondary apatite and titanite.
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the latter explicitly assumes a statistically random
structure [Bunge et al., 2000].

4. Discussion

4.1. A Composite 7.x Layer

[10] New data from this study combined with that
from Barnhart et al. [2012] provide a robust data
set with which to evaluate the evolution, seismic

structure, and rheology of the deep crust in Mon-
tana. Calculated pressures of 0.6 to 1.5+ GPa are
consistent with derivation from depths of 23–
54 km, and when compared to the vertical extent of
the seismically defined 7.x layer [Gorman et al.,
2002], those from below �32 km can likely be
considered samples from within the bulk high
velocity lower crustal layer (Figure 2). However,
heterogeneity across a wide range of characteristics
(mineralogy, textures, bulk chemical compositions,

Figure 2
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Figure 2. Calculated bulk physical properties plotted against depth for crustal xenolith samples from Montana.
(a) Bulk compressional wave velocities. (b) Bulk shear wave velocities. (c) Ratio of bulk P-wave to S-wave velocities.
(d) Density. New data reported in this study are those from Sweet Grass Hills and Homestead kimberlite. Also shown
are data reported by Barnhart et al. [2012] from Robinson Ranch, Little Sand Creek, and Eagle Buttes in north-central
Montana. Barnhart et al. [2012] calculated bulk physical properties for the Eagle Buttes samples using compositional
data provided by Joswiak [1992]. Error bars in physical properties (x axis of plots) represent variation based on thin
section scale compositional heterogeneity, which was evaluated by making similar calculations over halves of the full
thin sections (see Barnhart et al. [2012] for further discussion). Error bars in pressure (y axis) represent nominal
�0.1 GPa for TWQ thermobarometry [Berman, 1991] and, while applicable to all samples, are only shown for one
sample (red bars) for clarity in the figure. Exceptions to this are two samples with relatively large errors in pressure
(gray bars) that reflect additional geological uncertainty in equilibrium compositions and that are taken from
Barnhart et al. [2012]. Velocities used in plots are Voigt-Reuss-Hill averages calculated at 500�C. The depth of the
Moho and extent of the 7.x layer as determined by Gorman et al. [2002] are shown with gray shaded background.
Moho picks from Gilbert [2012] for stations closest to Sweet Grass Hills (SGH), Homestead (HS) and Robinson
Ranch (RR) are shown by heavy blue lines. The band of data plotted at 1.7 GPa are calculated properties for 19 upper
mantle (spinel-facies) xenoliths, whose compositions and modes were reported by Downes et al. [2004] from two sites
in the Bears Paw Mountains (Little Sand Creek and Warrick Creek; data presented in Table S2 in Text S1 in the
auxiliary material). Properties for mantle xenoliths with less than and greater than 10% phlogopite (indicating substan-
tial hydrous metasomatism) are delineated with small bar and arrow. (e) Average modal mineral (or group) content
versus depth. Each data point represents average modal percentage for 4–6 samples over depth ranges equivalent to
pressures of <0.8, 0.8–1.1, 1.1–1.3, and 1.3–1.6 GPa. The yellow and blue shaded regions track 1 standard deviation
for quartz and feldspar.

Table 2. Seismic Properties and Density for Montana Crustal Xenolithsa

Sweet Grass Hills Homestead

05SG02 � 05SG03 � 05SG05 � 05SG08 � 05SG20 � HS1 �b HS1-alt � HS2 �
P (Gpa) 0.80 1.34 1.10 1.21 1.30 1.10 1.10 1.12
Teq (�C) 900 900 900 855 890 780 500 785

25�C
rho (g/cm3) 2.83 0.02 3.50 0.07 3.06 0.12 3.42 0.03 3.68 0.10 3.28 0.19 3.11 0.01 3.29 0.19
Vp (km/s) H-S 6.40 0.02 7.55 0.09 6.95 0.17 7.72 0.02 8.28 0.20 7.26 0.22 7.00 0.05 7.33 0.22
Vs (km/s) H-S 4.01 0.02 4.30 0.06 3.96 0.08 4.34 0.01 4.65 0.11 4.07 0.13 3.91 0.03 4.08 0.13
Vp/Vs H-S 1.60 0.00 1.76 0.00 1.76 0.01 1.78 0.00 1.78 0.00 1.78 0.00 1.79 0.00 1.80 0.00
Vp (km/s) VRH 6.45 0.03 7.56 0.09 7.02 0.18 7.74 0.03 8.29 0.21 7.28 0.22 7.02 0.05 7.37 0.22
Vs (km/s) VRH 4.02 0.02 4.29 0.06 3.98 0.09 4.34 0.01 4.64 0.12 4.07 0.12 3.91 0.03 4.09 0.12
Vp/Vs VRH 1.60 0.00 1.76 0.00 1.76 0.01 1.78 0.00 1.79 0.00 1.79 0.00 1.80 0.00 1.80 0.00

500�C
rho (g/cm3) 2.82 0.02 3.46 0.07 3.03 0.12 3.38 0.03 3.64 0.10 3.24 0.18 3.07 0.01 3.26 0.18
Vp (km/s) H-S 6.26 0.02 7.37 0.09 6.79 0.17 7.53 0.03 8.10 0.20 7.07 0.21 6.83 0.04 7.16 0.21
Vs (km/s) H-S 3.87 0.02 4.16 0.06 3.83 0.08 4.20 0.01 4.52 0.11 3.92 0.13 3.78 0.02 3.95 0.13
Vp/Vs H-S 1.62 0.00 1.77 0.00 1.77 0.01 1.79 0.00 1.79 0.00 1.80 0.01 1.81 0.00 1.81 0.01
Vp (km/s) VRH 6.31 0.03 7.38 0.09 6.87 0.17 7.56 0.03 8.11 0.21 7.09 0.21 6.85 0.04 7.20 0.21
Vs (km/s) VRH 3.88 0.01 4.15 0.06 3.85 0.08 4.20 0.01 4.52 0.12 3.92 0.12 3.78 0.02 3.95 0.12
Vp/Vs VRH 1.63 0.00 1.78 0.00 1.78 0.01 1.80 0.00 1.79 0.00 1.81 0.00 1.81 0.00 1.82 0.00

Teq
rho (g/cm3) 2.80 0.01 3.42 0.07 3.01 0.12 3.35 0.02 3.60 0.10 3.21 0.19 - - 3.23 0.19
Vp (km/s) H-S 6.12 0.02 7.19 0.09 6.64 0.16 7.37 0.03 7.92 0.20 6.94 0.20 - - 7.04 0.20
Vs (km/s) H-S 3.74 0.01 4.02 0.06 3.70 0.07 4.08 0.01 4.40 0.12 3.82 0.13 - - 3.85 0.13
Vp/Vs H-S 1.64 0.00 1.79 0.00 1.79 0.01 1.81 0.00 1.80 0.00 1.82 0.01 - - 1.83 0.01
Vp (km/s) VRH 6.17 0.03 7.20 0.09 6.72 0.16 7.40 0.03 7.93 0.20 6.96 0.20 - - 7.08 0.20
Vs (km/s) VRH 3.74 0.02 4.01 0.06 3.73 0.07 4.08 0.01 4.39 0.12 3.82 0.12 - - 3.86 0.12
Vp/Vs VRH 1.65 0.00 1.80 0.01 1.80 0.01 1.81 0.00 1.81 0.00 1.82 0.00 - - 1.83 0.00

aVRH = Voigt-Reuss-Hill average. H-S = Hashin-Shtrikman. Velocities were calculated at Teq as well as at 25�C for comparison with laboratory
measurements commonly reported at room temperature and at 500�C, which is a maximum long-term residence temperature for modern lower crust
in this region [Blackburn et al., 2012].

bDue to poor peak assemblage preservation, uncertainties for HS1 are assigned to be equivalent to those for HS2.
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physical properties, and geochronology) suggests the
7.x layer is a composite feature [Barnhart et al.,
2012]. Zircon U-Pb [Blackburn et al., 2011;
Blackburn et al., 2012a; Bolhar et al., 2007; Davis et
al., 1995; Scherer et al., 2000] and Th-U-total Pb
monazite data [Barnhart et al., 2012] from crustal
xenoliths across a range of localities in Montana
indicate igneous, metamorphic and/or fluid flow
events at >2.6 Ga, 2.2–2.0 Ga, 1.83–1.68 Ga, and
1.5–1.3 Ga. The earliest Proterozoic (2.2–2.0 Ga)
and Mesoproterozoic (1.5–1.3 Ga) events likely
involved rift-related intra- and/or underplating of
magma. The former is indicated further by exposures
of similarly aged mafic dikes and sills along both the
northern [Mueller et al., 2004] and southern margins
of the Wyoming craton [Cox et al., 2000; Harlan
et al., 2003; Premo and Van Schmus, 1989]. Meso-
proterozoic continental extension is indicated by the
Belt Basin rift system, which extends in the subsur-
face to as far east as 107.5�W in central Montana
[Vuke et al., 2007] (Figure 1), and widespread
Mesoproterozoic mafic dikes across the Wyoming
craton [Chamberlain et al., 2003]. The influence of
ca. 1.8–1.7 Ga orogenic events on Montana crustal
xenoliths is supported by petrologic evidence for
polymetamorphism associated with both crustal
thickening and tectonic decompression [Barnhart
et al., 2012] that coincide with surface geologic
records of the collisional Great Falls Tectonic Zone
[Ault et al., 2012; Harms et al., 2004; Mueller et al.,
2002; Roberts et al., 2002]. However, it is unclear
whether a significant volume of new lower crustal
material was added at this time. If so, it may have
been in the form of mechanically imbricated oceanic
material added during suturing [Barnhart et al.,
2012; Chamberlain et al., 2003] or syn-collisional
mafic magmatism perhaps analogous to suspected
Miocene underplating in Tibet [Grujic et al., 2011].

4.2. Velocity Structure Within the 7.x Layer
and Across the Moho

[11] Calculated seismic velocities for the xenoliths
generally increase with estimated depth and those
below �33 km are consistent with a similar depth
for the seismically imaged top of the high velocity
layer (Figure 2) in central Montana from the Deep
Probe/SAREX experiments [Gorman et al., 2002].
Below this estimated depth, calculated velocities at
500�C vary from 6.85 to 8.11 km/s (7.02–8.29 km/s
at 25�C), consistent with the 6.9–7.8 km/s veloci-
ties modeled for the lower crustal layer in the Deep
Probe/SAREX experiments. While there is consid-
erable variation in velocities from the whole suite
of deeper Montana xenoliths, the data may indicate

the presence of an additional delineation above and
below �40 km (Figures 2a and 2b). Above this
depth, no calculated P-velocities exceed 7.2 km/s
(or 3.93 km/s for S-velocities), whereas below this
depth all but one exceed 7.35 km/s (and 4.07 km/s
for S-velocities).

[12] The xenolith data presented here may help to
resolve some apparent discrepancies in recent seis-
mic observations. In particular, the depth to the top
and bottom of the prominent high velocity deep
crustal layer, and thus thickness of the layer and crust
mantle boundary depth, vary significantly between
the high-resolution refraction/reflection experiments
of Deep Probe and SAREX [Clowes et al., 2002;
Gorman et al., 2002] and recent regional ambient
noise surface wave [Bensen et al., 2009] and receiver
function [Gilbert, 2012] studies. The results of Deep
Probe/SAREX placed the top of the 7.x layer at
depths ranging from 30 to 40 km inMontana and that
of the Moho at nearly 60 km (“Moho” used in ref-
erence to seismic definition of crust/mantle boundary
and in context of seismic experiments). The shear
wave velocity model of Bensen et al. [2009], from
which Gilbert [2012] also shows a vertical cross-
section for Wyoming and Montana along a profile
near the Deep Probe transect, places the top of the
layer closer to 20 km. This discrepancy may be
largely due to parameterization constraints in the
Bensen et al. [2009] model since they impose upper
and lower crystalline layers with equal starting
thicknesses. However, the Montana crustal xenolith
data don’t exceed 7 km/s P wave velocities above
�30 km estimated depth (Figure 2a).

[13] The more pronounced discrepancy in seismic
observations lies with estimates of crustal thick-
ness. Moho depth from Deep Probe/SAREX ranges
from 49 to 60 km with estimated errors of <1.5 km
(58 km in central Montana [Gorman et al., 2002]).
Bensen et al. [2009] invert surface wave data to cal-
culate crustal thicknesses of 45–50 km for our study
area. However, Moschetti et al. [2010, Figure 6]
demonstrate that surface wave inversions have an
uncertainty in Moho depth of �10 km due to a tra-
deoff with lower crustal velocity. The receiver func-
tion study of Gilbert [2012], which used USArray
TA stations across the western U.S., also shows
Moho depths between 39 and 50 km in central
Montana. Extracted Moho depths from Gilbert
[2012] for stations closest to xenolith localities
Homestead, Robinson Ranch/Little Sand Creek, and
the Sweet Grass Hills are 43 km, 43 km, and 39 km,
respectively (Figure 2), with estimated errors of �1
km. Gilbert [2012] uses constant velocities (Vs =
3.8 km/s, Vp/Vs = 1.74) below 16 km depth to
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migrate receiver functions; replacing his lower
crustal velocities with values based on the deeper
xenoliths from this study increases crustal thickness
by �2 km. Schutt et al. [2008] estimated crustal
thicknesses of 50+ km with the Billings Array, the
northern end of which is near the Homestead locality
(Figure 1), with a joint inversion of surface waves
and receiver function delay times which is more
robust with respect to the velocity-depth tradeoff
than either receiver functions or surface wave inver-
sions alone.

[14] The xenolith data are more consistent with the
greater estimates of Moho depth. As Gilbert [2012]
notes, receiver functions are most sensitive to veloc-
ity contrasts and thus the presence of a high velocity
lower crust can make the crust/mantle boundary
difficult to detect. As described above, the admit-
tedly relatively small xenolith data set presented here
nonetheless indicates a possible step in calculated
velocities across the �40 km plotting depth
(Figures 2a and 2b) suggesting that some receiver
functions may be seeing a velocity contrast “within”
the 7.x layer, particularly if the velocity contrast
between the lowermost crust and mantle is small
(see below). Clowes et al. [2002] propose a similar
layering at a section of the SAREX refraction line
near the Canada-U.S. border, where a 2–10 km thick
layer with velocities of 7.0–7.3 km/s overlies a dis-
tinctly higher velocity layer (7.5–7.9 km/s). Such an
interface would further strengthen the interpretation
that the 7.x layer is a composite structure [Barnhart
et al., 2012].

[15] The possibility of a diminished velocity con-
trast across the crust/mantle boundary in Montana
may be even more likely if previous suggestions of
regional metasomatized upper mantle are consid-
ered [e.g., Buhlmann et al., 2000; Carlson et al.,
2004; Downes et al., 2004; Dudas et al., 1987;
Facer et al., 2009]. Calculated properties (at 500�C
and 1.7 GPa) for nineteen spinel-facies upper mantle
xenoliths from the Bears Paw mountains, for which
modes and mineral compositions are provided by
Downes et al. [2004], are also shown in Figure 2
(see auxiliary material for data table). The results
display a strikingly diverse range of properties, with
P- and S-wave velocities from >8.3 km/s to
<6.5 km/s and from >4.75 km/s to <3.5 km/s,
respectively. The wide range in properties is pri-
marily due to variation from 0 to more than 50%
phlogopite, one of the primary mineralogical indi-
cators of metasomatism. The work from these and
other authors suggests that the mica was introduced
into the upper mantle during at least three separate
events: Proterozoic, which includes some of the

mica-rich (up to 36%mica) lithologies [Carlson and
Irving, 1994; Downes et al., 2004; Rudnick et al.,
1999], early Tertiary prior to interaction with host
magmas and perhaps related to hydration from
subduction of the Farallon plate [Downes et al.,
2004; O’Brien et al., 1991, 1995], and fractional
crystallization processes associated with the mag-
mas themselves [Buhlmann et al., 2000; Downes
et al., 2004; O’Brien et al., 1991]. While the most
mica-rich lithologies are interpreted as cumulates
associated with the last process and thus may rep-
resent relatively localized metasomatism, the two
earlier processes, which are also thought to be
responsible for mica modal occurrences of up to
36%, could represent regional modification of the
uppermost mantle.

4.3. Implications for Rheology of Montana’s
Lower Crust

[16] Lithospheric strength can vary widely across
tectonic settings and the nature of the lower crust,
particularly its composition, can play a fundamental
role in strength profiles [e.g., Afonso and Ranalli,
2004; Bürgmann and Dresen, 2008; Rutter and
Brodie, 1992]. A quartz-dominant rheology is com-
monly used to approximate crustal flow strength, and
a recent study across the western U.S. emphasized a
correlation between bulk crustal Vp/Vs, which is
particularly sensitive to the presence of quartz, and
Cordilleran-wide deformation [Lowry and Perez-
Gussinye, 2011]. However, one might expect a thick
high-velocity lower crust to be relatively quartz-poor
and thus somewhat stronger [Gilbert, 2012]. This is
supported by observations from the crustal xenoliths
in this study, whereby depth-averaged quartz content
is less than 10% below 30 km and less than 5%
below �45 km (Figure 2e), and by the distinctly
higher bulk Vp/Vs observed by Lowry and Perez-
Gussinye [2011] beneath the Montana high plains.
The xenoliths suggest that quartz and feldspar con-
tent may both decrease dramatically within the depth-
range of the 7.x layer at the expense of generally
increasing amounts of pyroxene (+amphibole) and
garnet, which is consistent with some other examples
of cratonic lower crust [e.g., Rudnick and Fountain,
1995]. Thus, a pyroxene-dominant lower crustal
rheology may be most appropriate for much of the
Montana/Wyoming region.

[17] The lateral and vertical heterogeneity of rheo-
logical properties imposed by the presence of a thick
and strong lower crust in Montana and Wyoming,
and its absence elsewhere in the Rockies and west-
ern Cordillera, could have significant implications
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for lithospheric deformation [e.g., Axen et al., 1998;
Lowry and Perez-Gussinye, 2011]. For example,
widespread lower crustal flow as proposed by early
models for Laramide deformation [Bird, 1988]
would seem less likely in the northern Rocky
Mountain region. However, the boundary between
distinct upper and lower crustal layers or even
interfaces within the lower crustal layer might serve
as convenient mechanical heterogeneities for local-
ization of Laramide-related crustal detachment sur-
faces [Erslev, 2005]. Since much of the upper
mantle in the Rocky Mountain region may also be
metasomatized, the result may be that the crustal
contribution to lithospheric strength in the northern
Rockies and high plains could be greater than that of
the upper mantle [e.g., Afonso and Ranalli, 2004].

5. Conclusions

[18] Geophysical studies, xenoliths, magmatic
records, and rare exposures of once deep rocks pro-
vide fundamental perspectives with which to inves-
tigate the structure, composition, and properties of
lower continental crust. Each has its own inherent
biases and/or limitations, making integrated approa-
ches crucial to further our understanding of litho-
spheric structure and evolution. We compared the
record from crustal and upper mantle xenoliths hos-
ted by ca. 50 Ma volcanic rocks from central Mon-
tana to seismic observations from the active source
Deep Probe/SAREX experiment and several other
passive source studies in the region, including those
utilizing EarthScope’s USArray. We emphasize a
composite history for the development of the high
seismic velocity lower crustal layer in the Wyoming
craton and southern Medicine Hat block. The possi-
bilities of resulting heterogeneity of physical prop-
erties within the lower crustal layer and a locally
reduced contrast in properties across the crust/mantle
boundary owing to upper mantle metasomatism may
help explain contrasting seismic interpretations of
crustal thickness in the region. Xenolith composi-
tions indicate that the high velocity lower crust is
mafic and potentially stronger than its upper mantle
counterpart if metasomatic effects described from the
Bears Paw Mountains are widespread.
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